生物的变异和遗传现象的物质基础
15.3 变异和遗传的物质基础
《生物学思想发展的历史》 恩斯特·迈尔著 涂长晟等译 https://tuenhai.com 整理
18世纪末和19世纪初,当变异的重要意义开始被人们认识到以后,它的原因是什么的问题便提了出来。变异可能影响升物机体的各个方面,即所谓的性状,无论是形态性状还是非形态性状。必然有某种生理的或化学的因素作为引起变异的基础。起初甚至连应当提什么问题也不清楚,只是在事后才有可能将这些问题用准确的语言表达出来
要回答的问题是:
- 某一物种的全部性状(性状总体)是由单一、相同的物种特异性物质控制还是每个性状由可以独立起变化的个别颗粒物质控制?
- 遗传物质是“软(式)”的(即在个体的一生中或其世代中能逐渐发生变化)还是“硬(式)”的(即完全固定不变,只有通过骤然的激烈变换——后来称之为“突变”才能发生变化)?
- 遗传性颗粒是怎样在体内形成的?
- 在受精后由父本和母本提供的遗传颗粒是保持其完整性还是完全融合?
上面这些就是19世纪后半期关于繁殖和遗传所提出的最突出的问题。在全部升物学史上某些最有才华的学者都曾为之绞尽脑汁并大大减少了可能的答案数目。他们提出了很多具有创见性的假说(其中有一些是正确的,也有很多是错误的),但他们也一再发现,他们自己面临许多看来是无法调和的矛盾
他们怎会料到,他们的这些问题的最后答案竟然会是大约一百年以后由分子升物学作出的!这个前所未有的新奇答案是,遗传物质仅仅是一份“蓝图”,一种信息指令程序,完全不是发育着的有机体的成形部分,而且在化学上也与之完全不同。但是最后取得这一答案还有很长的路要走。让我们先折回到1850年
当时原生质还刚刚被命名并被认为是活升物的主要物质。有人主张(Brucke,1861)原生质除非是由“基本单位”(某种结构元件)构成,它就不大可能体现其功能。实际上凡是对遗传现象深思熟虑过的学者都认识到细胞作为一个整体不可能是遗传的基本成分。总之,每个配子只是一个细胞,作为一个单元,它怎么能够控制某个个体在性状上的千差万别的差异?
基因概念的先驱
从1860年到1900年关于细胞质和细胞核中结构成分的性质一直是无尽无休的臆想热点,其中绝大多数既无实验依据又不是观察结果。自斯宾塞(Spencer,1862)到魏斯曼(Weismann,1892)这段时期的纵情臆想与以前30年(1835-1864)的态度迥然不同,那段时期相当严肃,显然是对《自然哲学派》的过分臆测阶段(1800-1835)的一种反作用。在这段相当严肃的时期中,许多学者单纯描述他们最感兴趣的问题并坚决不作概括性结论,即使这些结论看来是显而易见的
在另一个严肃阶段(1895年以后)中,摩根曾讥笑魏斯曼是“来自弗莱堡的哲学家”,并在还原论和实证论的势头上把“臆想”嘲笑得一无是处。有些批评虽然是正确的(见下文),但在这里倒想为这些臆想的学者说几句公道话,因为他们作出了一件非常宝贵的贡献:他们开始提出正确的问题,尽管他们的答案可能是错误的。如果不知道应当提出什么问题,又怎样会找到答案!错误的学说往往能给一个停滞沉寂的领域带来活力,而它们所引起的新的观察研究往往又几乎自动地导致它们本身最后被否定
几乎所有的这些学者都假定升物的躯体,包括其细胞,由很小的颗粒构成。这些颗粒必须具有个体发生上和遗传方面的双重功能。这是他们大家都一致同意的。除此而外,在其他各个方面他们之间又有分歧。关于这些颗粒的实质、它们在发育中的作用、它们在世代之间的传递等问题上更是分歧极大。每个学者都会为这类颗粒创造一个新词并提出一种发育与遗传的新学说
这些颗粒必须具有自我复制的能力,这一特点就是和无升物的根本区别,后者并不能自我复制。例如结晶的生长和细胞生长就按完全不同的方式进行
最后,为了发生进化演变,这些颗粒必须或者具有不断变化的能力(“软式”遗传)或者几乎固定不变(“硬式”遗传)。完全固定不变将会使进化不可能实现,所以这些颗粒有的时候必须能够“突变”,也就是说从某种固定不变的状态转变成另一冲固定不变的状态。因此只有对这些颗粒的物理性质、它们在细胞中的位置与排列、它们的复制、突变等能够同时提供解释的传选遗传学说才是完整的。从1860年到1950年这90年间所提出的试图解答这些问题的某些遗传学说,多少是比较完整的
第一个有关遗传和发育的概括性学说是由哲学家斯宾塞(1820-1903)完全根据演绎法提出的。它深受再生现象(如某些动物能重新长出失掉的尾巴)的影响。斯宾塞(1864)提出有某种大小介于细胞和简单有机分子之间的“生理单位”(physiclogical units)存在。这些单位被看作是能够自我复制、具有物种特异性的完全相同的单位(在某一个体内)。斯宾塞对同一物种不同个体的生理单位之间的差异作了似乎彼此矛盾的阐述。他将同胞动物之间的差异,归之于来自父本和母本的配子所含有的生理单位数目不同。升物的形体是由这些单位按预先确定的方式彼此连结起来的能力所决定,就像分子形成结晶时一样。另外,生理单位还具有对环境作出反应的能力,因而引起了获得性状遗传
另一个重要的遗传学说是达尔文于1868年出版的《动植物在家养条件下的变异》一书中提出的泛生论(theory of Pangenesis)。德弗里于1889年正确指出,达尔文的泛生论实际上包含两部分,一部分是假定升物的遗传性是由生殖细胞中大量肉眼不可见的、各自不同的微芽(gemmules)体现的假说。这些微芽通过分裂而增殖,并在细胞分裂时由母细胞传给子细胞
这一假说最重要的一点是,认为存在着大量不同种类的微芽(可以说是微芽种群),这和斯宾塞从本质论观点出发所设想的、在某一个体中完全相同的生理单位不同。达尔文泛生论的另一部分将在以后介绍
在随后的15年中其他的一些学者也提出过类似的遗传微粒,例如Ellsberg(1874)和海克尔(Haeckel,1876)的“成形微粒”(Plastidules),这类微粒或者全都完全相同(和斯宾塞的生理单位相似)或者各不相同(和达尔文的微芽相仿),基本上并没有增添什么新的观点
当时最试图说明一切而又具有纯推论性的遗传学说,是由瑞士植物学家内格里(Karl Wilhelm von nageli,1817-1891)于1884年提出的。他比前人更明确地指出升物有机体的原生质由两部分组成:普通的或营养性原生质和与升物有机体遗传成分有关的“特殊原生质”(idioplasm,一般译为异胞质)。这种区分是根据下述的观察结果作出的,即父本和母本为后代的遗传成分所作的贡献一般是相等的,虽然卵的重量或大小比精子的要高出一千多倍。因此,卵只有一小部分(大致和一个精子的重量相近)能够含有异胞质。人们可能会以为这一结论会促使内格里认定异胞质只存在于细胞核内。奇怪的是实际并非如此;他认为异胞质是由细胞到细胞的长索状物质组成(与细胞核无关)。每股长索则由无数类群的分子团(micelles)构成,每股长索的横截面在各处都完全相同。每股各有其特殊性,由这些股合成的束来控制细胞、组织、器官的性能。生长就是这些股索的延伸,并不改变其稳定性
内格里对异胞质活性的解释也别出心裁;他认为,这活性是由于股索中分子不同基团的激发状态不同所引起。这就是他为什么将他的推论称为“进化的机械-生理学说”的原因。他将几百页连篇累读的议论用十分矜持的语言来结束,“异胞质学说……能够对遗传的和种系的变化在自然界中得以发生(机械性地发生)作出唯一可能的说明(Nageli,1884:81)。”Barthelmess(1952)说过,他之所以如此详细地介绍内格里的推测,是因为它们也许是那个时期各种臆测中最极端的例子:“今天我们对这幻想的空中楼阁当然会感到惶惑,对作者扬言只有按他的学说才能解开升物进化这个谜的自负不能不感到诧异。”然而也正是由于内格里对遗传和发育过程的各个可以想像得到的方面都作过推论,所以具有深远影响。事实上在此后的20年中这一研究领域内的所有文献无不以崇敬心情广泛引用他的论述。总之,内格里在他的那个时代是一位显赫的知名学者。然而,他的学说中几乎每一个细节都是根本错误的,而且几乎没有一点具有事实根据。在评价内格里的遗传学说时有一点必须注意,即他非常重视物种间的杂种,其中孟德尔的性状分离极为罕见或根本不存在。这是内格里无法理解孟德尔在豌豆中的发现的原因之一(见第十六章)
内格里有一个观点对遗传学说真正具有十分重要的建设性影响,就是他坚持将异胞质和其余的原生质严格地区分开。正当内格里发表他的著作的同时先后有另外三位学者各自独立地得出了与内格里相同的结论并进一步推论遗传物质含于细胞核中(见下文)。为什么内格里没有认识到细胞核是他的异胞质的所在地这个问题一直令人无法思议。因为在1884年,当内格里发表他的《进化的机械 -生理学说》时,细胞核在受精中的作用已广为人知,而且父本的和母本的异胞质处于相对平等地位(这是他作出推论的原因之一)本来也应当使内格里意识到细胞核的作用。1866年海克尔在证据很少的基础上推断,“细胞核司管可遗传性状的遗传,其周围的细胞质则负责日常生计或对环境的适应”(Haeckel,1866,I:287-288)
动、植物受精作用的实质是父本和母本的生殖细胞(配子)互相融合,这两个配子在形成新的合子上各自作出了同样贡献,而且关键过程是两个配子的细胞核相互融合,这些观点到了1844年左右已经逐步确立并被有关学者普遍接受。人们的注意力便开始转移到细胞核上。细胞核是不是就像后生论者所设想的,仅仅是一团无定形的胚样物质、也许只是在融合时才激发了卵细胞的发育过程?或者是细胞核虽小,却具有严密结构,这肉眼不可见的显微结构是否就是受精作用之后的一切非常精确并具有特异性的发育过程的关键?如果把细胞核仅仅看作是细胞发育和细胞分裂的引发物,就会认为它在完成了这一任务后就会被溶解掉,在新的细胞分裂之前或至少是在配子形成之前再重新形成
由于19世纪后半期的细胞学家所接受的都是生理学家或胚胎学家的教育训练,他们的侧重点是发育问题,因而用不着关心细胞核的连续性。他们很少过向性状是怎样从亲代传递到子代的遗传学问题
1875-1880年之间由于Balbiani,van Beneden,Flemming。Schleicher,Strasburger等五位学者在细胞分裂过程中能够不断追踪其全部进程,因而“自由细胞形成”或细胞核“重新”形成这种信念的最后残余才得以完全肃清。这几位学者论证了三项重要事实:
(1)在细胞分裂之前细胞核开始分裂,
(2)细胞核物质的变化具有正常顺序(见下文),
(3)细胞核分裂和细胞分裂的基本现象在植物界和动物界都是相同的
越来越明显的是,细胞核的作用不单是生理性的(即纯粹物理意义上的作为细胞分裂的引发物)。它是具有严密组织的、很可能是按特定格局构成的结构。这种格局的实质此后一直是细胞学者不断关心的问题,仍然没有求得最后答案
关于这方面研究进展的特点是分析越来越细。所涉及的步骤是从完整个体转向细胞,从整个细胞转向细胞核,现在则从完整的核转向到它的主要结构成分、染色体
独立思考最难得,赞赏支持是美德!(微信扫描下图)